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SUMMARY 
An estimate is given of the distribution of skin frictional force 

per unit length, and of displacement area, on the outside of a 
semi-infinite cylinder, of arbitrary cross-section, moving steadily 
in a direction parallel to its generators. A Pohlhausen method 
is employed with a velocity distribution chosen to yield zero 
viscous retarding force on the boundary layer approximations. 
(The smallness of the fluid acceleration far from the leading edge 
has been pointed out by Batchelor (1954).) Like the Rayleigh 
method, this method is expected to yield reasonable results at 
large distances from the leading edge. However, for a large 
class of cross-sections, which includes all convex cross-sections 
and locally concave cross-sections with re-entrant angles greater 
than JT, the method yields the expected square root growth of 
the boundary layer at the leading-edge, with a fairly close approxi- 
mation to the coefficient, and it is supposed that the skin-frictional 
force and displacement area are given with reasonable accuracy 
along the whole length of the cylinder. 

Results for the elliptic cylinder and the finite flat plate are 
given in closed form, valid for the whole length of the cylinder, 
and are expected to be in error by at most 20':/,. In addition, some 
estimate is given of the effect of corners on skin frictional force and 
displacement area. 

1. INTRODUCTION 
This paper deals with the boundary layer on a long cylinder of arbitrary 

cross-section in a stream parallel to the generators. The shape of the nose 
is immaterial, but it is supposed to be smooth enough not to cause separation. 
It is the growth of the boundary with distance x from the leading edge, and 
the distribution of skin friction along the cylinder, with which this paper 
is concerned. 

The problem for the cylinder of arbitrary cross-section has been tackled 
by Batchelor (1954). His work is based on Rayleigh's (1911) method of 
inferring a rough answer from the analogous time-dependent heat-conduc- 
tion problem of determining the temperature distribution in an infinite 
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homogeneous solid, initially at zero temperature, but with the internal 
boundary (an infinitely long cylinder) maintained for t > 0 at a constant 
non-zero temperature. The time t is then interpreted as x/U,  the thermal 
diffusivity as v, and the temperature as the departure of the velocity u 
from the free stream value U. 

This method assumes that vorticity in the boundary layer is convected 
downstream with the free stream velocity instead of the local velocity u 
in the boundary layer. In consequence, the boundary layer thickness is 
underestimated and the skin friction is overestimated. 

For the cylinder of arbitrary cross-section Batchelor finds that, for 
small values of v x / U ,  the local properties in the boundary layer are 
independent of the cylinder cross-section. They are as in the well-known 
Blasius layer, for which the boundary layer thickness varies like ( ~ x / U ) l / ~ .  
For the Blasius layer, Batchelor, like Rayleigh (1911), obtains for the local 
skin friction 0 - 5 6 4 p U ( ~ x / U ) - ~ ’ ~ ,  when the true coefficient is 0.332. This 
is a serious overestimate. 

At values of v x / U  for which the thickness of the boundary layer is 
comparable with a typical dimension 1 (taken to be the perimeter divided 
by 2n) of the cylinder cross-section, the effect of the cross-sectional shape 
is important. The first approximation for the effect of the shape of the 
cylinder on the force per unit length of cylinder is determined in terms 
of the number of corners and their angles in the cylinder cross-section; 
if there are no corners, the force on a unit length of the cylinder is the same, 
to this approximation, as that on a circular cylinder of the same perimeter. 
For large values of x/U the boundary layer thickness is large compared 
with I ,  and it is here that we expect the Rayleigh method to furnish reasonable 
results since conditions in a large part of the outer boundary layer approxi- 
mate to free stream conditions. Batchelor shows that the bulk properties 
of the boundary layer for large values of x /U are the same as those for the 
circular cylinder which has the ‘equivalent radius’ c, such that the two 
cylinders, if given the same charge per unit length, would have the same 
electrostatic potential at large distances. Moreover, the rate of retardation 
of the fluid becomes very small. 

Batchelor’s solution for the general cylinder can be regarded as giving 
useful qualitative results, but is inadequate quantitatively except far down- 
stream where it was shown by Glauert & Lighthill (1954) to be good. 

Glauert & Lighthill (1954) investigated the boundary layer on a circular 
cylinder by using a Pohlhausen method with a velocity profile of the form 
A(x)log(v/c), where Y is the distance from the axis of the circular cylinder. 
This profile has the virtue of satisfying conditions near the wall as accurately 
as possible, and of being the profile for which the viscous retarding force 
is identically zero. A ( x )  was determined by substitution in the integrated 
momentum equation. 

The results near the leading edge show good agreement with the exact 
solution (due to Seban & Bond (1951) and corrected by Kelly (1954)), 
in which the Stokes stream function is expanded in powers of (vx/(  Ua2))l12, 



Approximate boundary layer theory for semi-injinite cylinders 603 

The solution also agrees well with an asymptotic series solution, published 
in the same paper, which is valid far downstream. 

T o  summarize: Batchelor has shown that for a cylinder of arbitrary 
cross-section far from the leading edge the viscous retarding force is very 
small, and in the outer part of the boundary layer where conditions are 
symmetrical the velocity profile is of the form A(x)log(r/c), where A(x) 
depends upon the cylinder cross-section. Moreover Glauert & Lighthill 
have shown that for the case of a circular cylinder a Pohlhausen method 
with a velocity profile yielding zero viscous retardation gives good results 
along the whole length of the cylinder. 

In the present paper a Pohlhausen method is again used with a velocity 
profile for which the viscous retarding force is identically zero along the 
whole length of the cylinder, and which agrees with the known solution 
far downstream. We expect the present method to furnish good results 
in the region where the boundary layer thickness is comparable with 1, 
since in this region Batchelor shows that the viscous retarding force is small. 
To see whether the method, like that of Glauert & Lighthill, has value also 
near the nose, we expand the solutions for different shaped cross-sections 
at the nose and compare them with the expected Blasius solutions. 

We assume the velocity profile is of the form A(x)+(y, x), where y, x are 
Cartesian coordinates in the cross-sectional plane. I t  is further assumed 
that for a large distance Y from an axis fixed in the cylinder boundary + varies 
like log(r/c). The determination of + is then seen to be reducible to a 
potential problem, the solution of which is known once we can determine 
the conformal mapping which transforms the exterior of the cross-section 
into the exterior of its ' equivalent circle ', the modulus of the transformation 
being unity at infinity. This is the problem in electrostatics of determining 
the potential due to an infinite cylinder with a charge distribution of one 
unit of charge per unit length of the cylinder. A(x) for a given cylinder 
is then determined from the momentum integral equation, Glauert & 
Lighthill's solution for a circular cylinder being a particular case. 

It is shown that, only for flows down cylinders whose cross-sections 
contain a re-entrant angle of 90" or less, does this solution break down 
qualitatively at the leading edge by not giving initially the expected 
square-root law of boundary-layer growth with distance from the leading 
edge. Further for a large class of cross-sectional shapes, including circles, 
ellipses, convex polygons, and partly-concave polygons having re-entrant 
angles greater than 5.ir/8, this method gives quantitative results at the leading 
edge for bulk properties, such as skin friction force per unit length, and 
displacement area, which are quite close to the known Blasius value, 
and much better than values obtained by the Rayleigh method. On the 
other hand, there is of course no attempt to predict velocity distributions 
in this or any other Pohlhausen method. 

In  addition, the results are expected to be good, like those given by the 
Rayleigh method, far downstream, because the assumption of a profile 
for which the viscous retarding force is zero becomes closer and closer to 
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the truth. ’i‘herefore, it is not unreasonable to suppose that the complete 
distribution of these bulk properties as functions of the distance from the 
leading edge is given satisfactorily. 

Solutions in closed form are given for the flat plate of finite width and 
the elliptic cylinder. The skin frictional force and the displacement area 
for the flat plate are given with errors of 3% and 10% respectively at the 
leading edge, and for the circular cylinder errors of 13% and $yo in the 
corresponding quantities. For the general elliptic cylinder the corre- 
sponding quantities are given with errors which lie between these two 
sets of values. (Rayleigh’s method gives an error of 70% and 35% in the 
skin frictional force and displacement area respectively.) I t  is expected 
that the errors gradually become less, further downstream. 

The sohtion of the problem for the general cylinder is given in the form 
of a double integral which is expanded in series both at the leading edge and 
far downstream. These solutions can, in general, be easily joined giving a 
solution valid along the whole length of the cylinder. The bulk properties 
of the flow are seen to depend on the cross-sectional perimeter at the leading 
edge, and on the ‘ equivalent radius ’ far downstream, the detailed shape of 
the cross-section being important in the intermediate region. 

Results for the finite flat plate and the square cross-section are given 
in tabular and graphical form. In particular, the graph of momentum 
defect area enables easy readings of the total frictional drag of the cylinders 
of any length to be made. Some consideration is also given below to several 
other polygonal shapes. 

2. GENERAL THEORY 

If u is the velocity in the x direction parallel to the generators of the 
cylinder whose boundary is denoted by r, and z’, w are the velocities parallel 
to Cartesian axes y ,  z fixed in the plane of the cylinder cross-section, then 
the boundary layer equations for the problem of this paper are 

(1 a) 

and 
( 1  b) 

au av aw 
ax ay az - + - + - = o .  

Equations (1) are to be solved under the boundary conditions 
= zl = = o oI’i r, 

u--) C asx->O or y , z +  rx). (2) 

u = 4 4 4 ( y , x ) ,  (3) 

The method of this paper is a Pohlhausen method based upon a profile 

with 4 chosen to yield zero viscous retarding force on the boundary layer 
approximations. A ( x )  is determined for a given cylinder by substitution 
in the momentum integral equation 
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where 

is the momentum defect area, ?; being the whole area outside the perimeter, 
and 

F = p $,Ed. 

(where d ~ ,  dn are elements of the perimeter I? and of its outward normal) 
is the frictional force per unit length of the cylinder. Equation (4) may be 
obtained either by direct physical argument or by integrating (1 a) over the 
whole area outside I' and using (1 b) to eliminate ZI and w. 

The viscous retarding force given on the right-hand side of equation (1  a) 
vanishes for the profile ( 3 )  if 

The particular solution of (7) with 4 = 0 on r which will be csed is simply 
the electrostatic potential of a cylinder at zero potential and unit charge 
per unit length, so that 

The join between the profile chosen for the boundary layer and the constant 
value U, which u must take outside the boundary layer, is effected by 
writing A(x) = U/cc(x), where u ( x )  is non-dimensional, and putting 

u = U+(_v,z)/u(x) for 0 < 4 < u, 
u - u  for + > cc. ((4 

(10) 
Then by (6) and (8) 

When C$ has been determined, the variation of cc with x follows from (4), 
which, with (8) and (lo), gives 

F = 2np  A(x) = 27rpU/u(x). 

Once the integral in (11) has been determined as a function of a,  it is easy 
to obtain the relation between a and x by one further simple integration. 

A seemingly objectionable feature of this method is the discontinuity 
in au/an at the edge of the boundary layer (given by 4 = a). However, 
Glauert & Lighthill have shown that this in itself does not lead to serious 
errors in a Pohlhausen treatment. Moreover, as vx/( Uc2) increases, the 
discontinuity (which is proportional to l/cc) decreases and we would expect 
the errors arising from it to decrease also. 

I t  now remains to determine the integral on the left-hand side of (11) 
as a function of cc for a given boundary shape F. The solution to the potential 
problem given by (7) and (8) has been found for a number of boundary 
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shapes. I n  particular for a circular cylinder of radius c the solution takes 
the form 

and if 5 = rei' then this can be written as 
+ = log(r/c), (12) 

ceS, say. (13) 5 I ceb+ie = 

The solution of (7) and (8) for a given boundary then reduces to finding 
the conformal mapping 

which maps the exterior of the boundary r in the w (= x + iy) plane on to 
the exterior of the equivalent circle of radius c in the 5-plane. The solution 
O f  

then gives + (the real part of s) as a function of y and x. 

the (0, +)-plane, noting that 

the equation becomes 

w =f(<), with f(5) - 5 for large 5,  (14) 

w = f( ces) (15) 

If we now change variables in (11) from the physical (y,x)-plane into 

dJfdz = /dw/ds12 dOd+, (16) 

(17) 
d ~ + ( c I - + )  2n dw2 2vr 
& l o T d + ~ o  1x1 do = uoc' 

The mathematical problem is thus reduced to the calculation of the inner 
integral in (17). 

A quantity of special interest is the displacement area 

which represents the amount by which the fluid outside the boundary 
layer is displaced owing to the reduced flow inside. On the present theory 
(18) takes the form 

which is a function of u.. Once (17) has been solved numerically to give 
the variation of u with ( v x ) / ( U ~ ~ ) ~  equation (19) enables us to determine 
the variation of A with ( vx ) / (  Uc2). 

T o  check the accuracy of the method for a given cylinder we expand the 
solution at the leading edge in terms of the parameter (vx)/(  UP) and compare 
it with the expected Blasius layer, where I is the perimeter divided by 2n, 
given in the present method by 

3.  FLAT PLATE OF FINITE WIDTH 

'The well-known mapping which transforms the exterior of the finite 
flat plate of width 4c in the w-plane on to the exterior of its equivalent circle 



Approximate boundary layer theory for semi-injndte cylinders 607 

w = [ + c 2 / [ ,  (21) 

(22) 

of radius c in the [-plane is 

which can be transformed by using (13) into the required form 
w = 2c cosh S. 

The form (22) shows that this method assumes that lines of constant 
velocity are confocal ellipses when at the leading edge they should be flat 
cylinders. This is a source of error at the leading edge, although the effects 
may well cancel out more or less on integrating round the perimeter. 

On substituting the value of jdw/ds12 given by (22) it is easily deduced 
that, for a flat plate of width 4c, 

27s 

Idw/dsj2 dB = 2.rrc2(e20 + e-24), (23) 
0 

which when substituted in (17) reduces the momentum integral equation to 

The integral in (24) is 

( l/a2)(a cosh a - sinh a)cosh a, 

whence (24) can be solved giving 

(25 ) 
vx 2 ash; - 1 - - [cosh2a+3- -sinh 2a+ 
uc2 - 2 a 0 

The integral in (25) is a well-known exponential integral which has been 
copiously tabulated so that the variation of a with (vx)/( Uc2), and hence 
the skin frictional force per unit length F = 2npU/a, is easy to determine 
numerically. 

For practical purposes the results are given in tabular and graphical 
form. The only means of finding if the solution is accurate up to the leading 
edge is to expand the solution in powers of { (vx) / (  UZ2)}lI2 and compare the 
first term in the expansion for skin frictional force and displacement area 
with the expected exact values of Blasius. For the flat plate of finite width 4c, 

I = 4c/n-. (26) 
The right-hand side of (25) may be expanded as 

(vx)/( UC2) = &a2 + 5.4 + O(a6) 

which is easily inverted to give, using (26), 

The exact coefficient of { ( vx ) / (  UZ2)}--li2 in (27) is given by Blasius as 0.332 
showing that even at the leading edge the method of the present paper 
applied to a flat plate gives the frictional force with an error of 3 %, although 
some cancelling of errors doubtlessly occurs. Since it is reasonable to 
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assume that the method becomes more accurate far downstream we see 
that the distribution of skin frictional force is given remarkably well along 
the whole length of the flat plate. In contrast the Rayleigh method gives 
the coefficient 0.564 which overestimates the skin frictional force by 700/, 
at the leading edge. 

-3.0 
- 2.5 
-2.0 
-1.5 
-1.0 
-0.5 

0.0 
0.5 
1 4 
1.5 
2.0 
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1.44 

0.05 
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1.16 
1.57 
1.99 
2.42 

- 
- 

i-73 

Table 1. Finite flat plate. 
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'I'o determine the displacement area A we substitute (23) in (19) to give 

Equation (28)  together with (24) enables us to find numerically the 
variation of A with x. The results are given in graphical and tabular form 
in table 1 and figure 1. 

For conditions at the leading edge we expand the right-hand side of (28)  
as 

When we substitute for a in (28) as a power series in ( ( V X ) / ( U P ) ) ~ ' ~  we 
obtain 

A/(2.rrc2) = a + +a3 + O(a5). (29) 

2 2  = 1.924 ( m2 vx)" -2.18 ( jp VX>,.Z + O  ( - UP V X ) Z I 2  - (30) 
A 

Blasius gives 1.72 as the exact coefficient of { (vx) / (  UZz)ll'z, showing that 
at the leading edge the Pohlhausen method of the present paper gives an 
error of 11% in the displacement area. This can be compared with an 
error of 30% in the Rayleigh method which gives the coefficient as 1 . 1 3 .  

In addition to A, the momentum defect area A@ defined as in (5) will 
be considered. The integral in (5) has already been evaluated to give 

O/(2rc2) = cosh a - sinh a)cosh a, ( 3 1 )  
whence O/(2m2)  may be plotted against ( vx ) / (  UP)). 

No comparison with other solutions need be made as k) is simply 
proportional to the integral of the skin friction F with respect to x. 'The 
graph of 0 as a function of x gives a convenient way of determining the 
drag pU20 on a plate of length x .  

4. ELLIPTIC CYLINDER 

The mapping 
w = < + CZk/<  (32) 

transforms the exterior of the ellipse with axes c( 1 + k) and L( 1 - k) in the 
w-plane on to the exterior of its equivalent circle of radius c in the c-plane. 
We may assume 0 < k < 1 since this range of R gives all possible values 
of the ratio of major to minor axes. 

Equation (32)  together with the transformation (13)  gives the solution 
of (7) and (8) in the form 

from which it is easily deduced 
w = c(e" + ke-9, (33)  

and 

where E is the complete elliptic integral of the second kind. 
1 = (2c/.rr)( 1 + k)E[Zk-1'2( 1 + k)-l] (35)  
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Substituting (34) in (17), the momentum integral equation becomes 

which is easily solved to give 

For conditions at the leading edge we expand the right-hand side of (37) 
to give 

(vx) / (Ucz)  = $(1 +k2)a2+~(l-k2)u3+&(1 +K2)u4+O(a5), (38) 
which is easily inverted to give together with (35), for the skin frictional 
force F, 

1-k2 + 0.667 - F 1  
l + k 2 +  

- = - = 0.455 
27rpu u 

The coefficient of {(..)I( UZ2)}-1/2 is a monotonically increasing function 
of k and varies between 0.289 for a circular cylinder (k = 0) and 0-321 for 
a flat plate of finite width (k = 1). Since for any cylinder cross-section 
we expect the error in this method to decrease far downstream it is not 
unreasonable to suppose that for the case of a general elliptic cylinder the 
frictional force is given everywhere with an error less than 13%. 

We can determine the displacement area A in a similar manner to that 
given for the flat plate and find 

The right-hand side of (40) can be expanded to give 

A/(2.nc2) = 3( 1 + k2)u + $( 1 - k2)a2 + O(u3), (41) 
which, with the solution of (38), gives 

- -  A (1 + k 2 ) 1 / 2  ( V X ) l / Z  + o -  ( ;72)3/z . 
2nP - 1*73 (1 + k ) E  m 

The coefficient of {(vx)/( UZZ))llz is a monotonically increasing function of k 
and varies between 1-73 for K = 0 and 1.92 for k = 1, showing that it is not 
unreasonable to assume that the displacement area A is everywhere given 
with an error less than 10%. 

In  addition the momentum displacement area 0 is given as 

0 1  
- -  - [ (a-  l )ezz+(a+l )+ka{(a+ l)e-Za+(a- I)}]. 27rc2- 4aa (43) 
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5. POLYGON CROSS-SECTIONS 

We now consider the application of the present method to flow down 
cylinders whose cross-sections are n-sided, closed polygons with exterior 
angles na, (Y = 1, ... n). Suppose that we can determine the a's of the 
Schwarz-Christoffel transformation 

with 

61 1 

dw/dt = A(t - a$'...( t - ~,)"/(1 + t2)2, (44) 

i a r  = 2, fa,/(aF+1) = I, f a , a , / ( a f + 1 )  = 0, (45) 

which transforms the exterior of the closed polygon in the w-plane on to 
the lower half of the t-plane, where A is a constant and conditions (45) 
ensure the polygon is closed and that the solution of (44) is single-valued. 
Then introducing the bi-linear transformation 

which maps the lower half t-plane on to the exterior of the circle of radius c 
in the <-plane and which with (13) can be written 

we see that the solution of (7) and (8) reduces to solving 

r - 1  r - 1  r = 1  

t = i(C - ~ ) / ( 5  i- 4, (46) 

t = tan(is/2), (47) 

if the constant B is suitably chosen, where 

The conditions (45) become 
a, = tan(*p,) ( r  = 1, ..A). (49) 

11. n 12 

zu, = 2, Za,cos/iI, = zu,sinp,. = 0. 
7=1 r = l  7=l 

From (48) it is easily deduced 

Since we seek the solution of (55) with 

we see that B' = 2c. 
Idw/dsl - ceQ for large 4, (52) 

For conditions far downstream we expand 

Idw/dsI2 d0 
0 

( 5 3 )  

in (17) and (19) in a series valid for large 4 which can always be written, 
by (50) and (51), as 

2n OD 

0 ln-1 
I Idw/ds12 d8 = 2 7 ~ c ~ ( e ~ ~ +  2 Arne-"+). (54) 

If we use the form (54) the solution of the momentum integral equation 
giving the variation of a, and hence of frictional force, with (vx) / (Uc2)  is 
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where 

In addition the variation of A with large a, and hence by (55) with large 
( vx ) / (  Uc2) is given in the series form 

m 

1 
A/2mz = (1 / 4 ~ ) ( e ~ ~  - 2a - 1) + 2 A, M(a, m),  (57) 

where 
M(a, m) = (l/m2a)(ma+e-'"a- 1). (58)  

For conditions at the leading edge we expand ( 5 3 )  in a series valid for small 4 
and solve equations (17) and (19) in series valid for small (vx)/(Uc2). In 
particular the expected square-root behaviour in the boundary layer at the 
nose occurs if the integral (53) converges for 4 = 0. 

Regular polygon 
For an n-sided regular polygon it is easily shown (Rickley 1929) that 

whence 
= xr/n (Y = 1 ,  ... n), 

ldw/dsl = 2'cc(sin(s/h)/'., 

where x A  = 27r/n is the common exterior angle of the regular polygon. 
From (60) it is easily deduced that 

d9 = Zif1c2 cosh(24/X) p(1- sech(24/X)cosy)'. dy. (61) 
0 

The integral on the right-hand side of (61) is a hypergeometric function 
which can be expanded in series valid for large and small 4. 

For conditions far downstream we expand (61) in a series valid for 
large 4, namely 

2n 
d9 = 2rc2e* F,( - A, - h ; 1 ; e-*/'), 

1 0  I4 
which is in the form given by (54) and enables us together with (55) and (57) 
to obtain numerically the variation of frictional force and displacement area 
with large distance x downstream. 

At the leading edge we expand (61) in the form 

F(-A, - A ;  -a; I-e-@'')+ 
(2h !) 

!I2 tan  =A( 1 - e-G/i)1+21 F( 1 +A, 1 + X ; 2 + 2X ; 1 - .--4/')], (63) 
+ 2n(2X+ l ) !  

except for the case of a square cylinder (A = +) when the integral on the 
right-hand side of (61) is an elliptic integral. The expansion of (61) given 
by (63) enables us to determine a series for the left-hand side of (61) valid 
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for small $, which when inserted in (17) and (19) readily gives for non-zero X 

+ h,(h)( G)1’2 + O( G)l+E, (64) 

and 

+D2(X) (G)3’2  +O(%>”-‘, (65) 

where for a regular polygon 

and 
1 = ch !/(X/2) ! (66) 

€=A,  A < $ ,  

€ = + ,  h 2 . g .  (67) 
The coefficients of ((..)I( UZ2)}-1/2 in (64) and of {(..)I( UZ2)}1/2 in (65) vary 
between the limits given for a flat plate (A = 1) and a circular cylinder 
( A  = 0), whence it is not unreasonable to suppose the skin frictional force 
per unit length and the displacement area are given everywhere with errors 
less than 13% and 10% respectively. 

An indication is given in (64) and (65) of the effect of flow outside an 
angle r(l -h) on skin frictional force and displacement area at the leading 
edge. For small values of X the coefficients of the fourth terms in (64) 
and (65) are so large compared with the second and third coefficients that 
the contributions of the second and third terms are well below the level of 
the fourth. For values of X - the second and third terms effectively 
cancel in both (63) and (64), while for values of X - 1 the third terms give 
the effective first approximation. 

The results given so far for skin frictional force agree qualitatively with 
a result given by Batchelor, namely: “’I‘he friction on cylinders (with 
inward curvature everywhere) with corners is always less than the friction 
on cylinders with smooth boundaries; to turn a corner sharply is more 
economical on drag than to do it gently with the same perimeter ”. The 
results do however disagree quantitatively with Batchelor by not predicting 
a finite effect for corners at the nose. 

In  addition a similar result holds for displacement area which can be 
stated : “ The displacement area on cylinders (with inward curvature 
everywhere) with corners is always greater than the friction on cylinders 
with smooth boundaries; to turn a corner slowly is more economical on 
displacement area than to do it quickly with the same perimeter ”. 

‘The values of F/(2rpU) for a cylinder of square cross-section are plotted 
in figure 1. For (vx) / (Uc2)  > 1 they are indistinguishable from those for 
a flat plate or circular cylinder of the same equivalent radius c. Glauert & 
Lighthill’s recommended curve, obtained by adding 9% on to the Pohlhausen 
values, is probably a close approximation for all shapes in this range. 
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n-pronged cross 
To investigate the application of the method of this paper to flows down 

cylinders whose cross-sections contain re-entrant angles we consider the 
case of the cylinder with a cross-section formed by n equal, equally spaced 
prongs, whence the common re-entrant angle is 2nln = nh. The solution 
of (7) and (8) is such that 

I dw/dsl2 = 2'c1sin(s/h)lA- 1 cos(s/A) I, (68) 
whence 1 = 2L+lC/(Th) (69) 
and 

2n I Idw/ds12 d6' = 2nc2e2+[F( - A, - A ;  1 ; e44i'A) + 
I1 - "  

+ 4( 1 - A)e-441A F(2  - A, 1 - h ; 2e-46'A)]. (70) 
The right-hand side of (70) can be written 

where 
which is in the form of (54) and enables us to find the distribution of skin 
frictional force and displacement area far downstream. 

T o  obtain a check on the accuracy of the method at the leading edge we 
continue (71) analytically for small r$ and obtain 

A ,  = ( A  - 1 ) 2  - ( A  - r + 1)yh - 2r)2/(r ! )Z,  (72) 

The right-hand side of (73) shows that only for re-entrant angles greater 
than 90" ( A  < i) does the method of this paper yield results which are 
qualitatively correct at the leading edge since they give the expected 
square-root growth of boundary layer with distance. For re-entrant angles 
less or equal to 90" the surfaces of constant velocity assumed by this method 
at the leading edge are so different from those in reality that the momentum 
defect is seriously overestimated, whence the skin frictional force is over- 
estimated. However, for re-entrant angles lying between n (flat plate) and 
5n/8 the skin frictional force is overestimated by between 3 % and 21 yo 
while the displacement area is overestimated by between 11% and 40%. 
These results are better than those given by the Rayleigh method. 

The greater part of this paper was written at Manchester University 
as a M.Sc. thesis; it was completed at Brown University under the Air 
Force Contract AF-49( 638)-232. The author is grateful to Professor 
Lighthill for his helpful suggestions. 
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